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Abstract

Transient simulation of two-phase gas-liquid ¯ow in pipes requires considerable computational e�orts.
Until recently, most available commercial codes are based on the two-¯uid model which includes one
momentum conservation equation for each phase. However, in normal pipe ¯ow operation, especially in
oil and gas transport, the transient response of the system proves to be relatively slow. Thus it is
reasonable to think that simpler forms of the transport equations might su�ce to represent transient
phenomena. Furthermore, these types of models may be solved using less time-consuming numerical
algorithms. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transient simulations of gas-liquid ¯ow in pipelines involves elaborate computer codes, the

design and use of which demand tremendous e�orts. Several codes have been proposed so far,

supported by oil and gas industry. Historically, OLGA is the ®rst ever of these. Developed in

Norway (Bendiksen et al., 1987, 1991), OLGA is a two-¯uid model with an additional

momentum equation for the droplet ®eld. The PLAC code (Black et al., 1990), born in

England a few years later, is also a two-¯uid model. At the Institut Franc° ais du PeÂ trole,

another approach based on drift ¯ux type models has been taken. The resulting code TACITE

is meant to become a commercial product (Pauchon et al., 1993, 1994). In the drift ¯ux side,

there has to be mentioned TRAFLOW, a product developed by the Shell Oil Company.

In the case of OLGA and PLAC, the model development and resolution algorithms had

been initiated earlier by the nuclear industry. In the nuclear industry, fast transients associated

to Loss Of Coolant Accidents (LOCA) are of major interest, while in the oil and gas industry,

the interest often lies in relatively slow transients, associated to the transport and subsequent

release of slugs at receiving facilities. Under these conditions, one may consider the momentum
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equation to be a steady state force balance, thus leading to simpler and less elaborate
calculations. Taitel et al. (1989) put forward a simpli®ed model in which the gas mass ¯ow rate
is declared to be in steady state. Unfortunately, this approach lacked the ability to account for
the transport time along the line in the case of gas ¯owrate variation at the inlet.
In this paper, we wish to study the behavior of various types of models under a few

transient scenarios. Three di�erent models were implemented, namely:

. a Two Fluid Model (TFM), based on one momentum conservation equation for each phase;

. a Drift Flux Model (DFM), based on one momentum conservation equation and an
algebraic slip relation;

. a No Pressure Wave (NPW) model, based on an algebraic relation for the pressure drop and
an algebraic slip relation.

It has to be expected that these three models have very di�erent analytical properties. For
instance, while TFM and DFM are hyperbolic models, the NPW model is a mixed parabolic/
hyperbolic one. Therefore, the numerical schemes in use will be di�erent from one model to
another.
In a ®rst stage, we seek to analyze the di�erences in response due solely to the model

equations. For the purpose of our study, the pipeline is visualized as a 1±D element of length
L. The coordinate along the pipe is called x. We also assume that the pipe properties such as
inclination y with respect the horizontal, diameter D, roughness, etc. are constant along x.
Temperature is constant as well, and no mass transfer occurs between the two phases. The
response of the three transport models are compared against selected transient scenarios, which
exemplify typical operational transient scenarios.
In a second stage, we look at the three codes from the standpoint of computing e�ciency.

The latter re¯ects the trade-o� between computing time and accuracy of the model response.
As for accuracy, it is de®ned in terms of the operating variables which are most signi®cant for
the end user, that is, the peak in outlet liquid ¯owrate subsequent to an increase in the inlet
gas ¯owrate.

2. The two-¯uid model

In dispersed ¯ow, the contrast between the two phasic velocities is small. Understandably, it
is anticipated that the added value of the two-¯uid model will be more apparent in the
strati®ed regime. This is why we shall rather emphasize the strati®ed con®guration in our
presentation of TFM.

2.1. Transport equations

TFM is governed by a set of four partial di�erential equations, the ®rst two of which
express mass conservation
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and the last two of which represent momentum balance
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In Eq. (3) and equ. (4), P denotes the interface pressure, while Vk, rk and Rk are respectively
the velocity, the density and the volume fraction of phase k $ {G,L}. The variables ti and tk are
the interfacial and wall momentum exchange terms. The quantities DPG and DPL correspond
to static head around the interface (De Henau and Raithby, 1995), de®ned as
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o being the wetted angle.
It is convenient to rewrite Eqs. (1)±(4) in a more abstract way as

@

@t
�w� � @

@x
�f�w�� � r�w� @

@x
�P � � q�w� �7�

where the vector

wT � �rGRG; rLRL; rGRGVG; rLRLVL� �8�
encapsulates conservative variables, as a function of which the vectors

fT � �rGRGVG; rLRLVL; rGRGV
2
G � RGDPG; rLRLV

2
L � RLDPL� �9�

rT � �0; 0; RG;RL� �10�

qT � �0; 0; tG � ti ÿ rGRGgsiny; tL ÿ ti ÿ rLRLgsiny� �11�
are computed. It is also possible to transform (7) into the quasi-linear form

@

@t
�w� � A�w� @

@x
�w� � q�w�: �12�

Under appropriate conditions (Masella, 1997), e.g. if

jVG ÿ VLj � cm �13�
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where cm is a pseudo-sound-velocity of the mixture, the matrix A(w) has four real eigenvalues
l1(w)Rl2(w)Rl3(w)Rl4(w), as well as a base of eigenvectors. This property is commonly
known as hyperbolicity. Note that, should the static head terms quantities DPG and DPL be
missing in Eq. (3) and Eq. (4), then hyperbolicity would be lost as soon as VG$VL.From the
standpoint of physics, the extreme eigenvalues l1 and l4 are associated to acoustic waves and
therefore can be very large, especially when the mixture is mainly composed of liquid. The
medium eigenvalues l2 and l3 are associated to void fraction waves, and their orders of
magnitude are about those of ¯uid velocities.

2.2. Numerical scheme

The resolution algorithm is based on a ®nite volume method, adapted to the non-
conservative form Eq. (12). The reader is referred to Masella's thesis (1997) for a more detailed
description of the numerical implementation.
Let us divide the pipeline into a sequence of uniform cells Mi=[xi ÿ 1/2,xi ÿ 1/2], the length of

each of them being Dx. The unknowns are located at the center of the cells: let wi be the one
associated to the cell MI. Discretization in space reads

d

dt
�wi � � hi�1=2 ÿ hiÿ1=2

Dx
� ri

Pi�1=2 ÿ Piÿ1=2
Dx

� qi �14�

where hi + 1/2 and Pi + 1/2 are obtained via a linearized Riemann problem at the interface
xi + 1/2. This simpli®ed Riemann problem, de®ned from the surrounding states wi and wi + 1,
involves a rough Godunov solver and is referred to as the VFRoe solver (Masella et al., 1996).
The time discretization is explicit with respect to the medium eigenvalues and linearly

implicit with respect to the extreme eigenvalues.
One of the trickiest problems here is to deal with the boundary conditions. Usually, two

inlet mass ¯owrates and one outlet pressure are imposed. However, if l1(w) < l2(w)Rl3(w) at
the inlet, then a further inlet data has to be supplied. At ®rst sight, a condition on the gas
volumetric fraction RG or on the gas mass fraction aG=rGRG/(rGRG+rLRL) seems to be
relevant. Nevertheless, it comes as a surprise that such a choice does not always give rise to
acceptable results, and in reality, the source terms must be taken into account.
As a matter of fact, most two-¯uid type codes impose either a von Neuman type boundary

condition (De Henau and Raithby, 1995) such as

@

@x
�RL� � 0 �15�

Others merely extrapolate the value of the liquid fraction. The staggered mesh approach
used in OLGA, with velocities de®ned at the mesh boundaries and pressure and void fraction
de®ned within the cells, allows avoiding the speci®cation of an extra boundary condition.
A careful investigation into di�erent terms in Eq. (3) and Eq. (4) reveals that, in slow

transients, the prevailing terms are the pressure drop and the source terms. When all remaining
terms are neglected, Eq. (3) and Eq. (4) degenerate into
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tG � tL ÿ �rGRG � rLRL�gsinyÿ @

@x
�P � � 0 �16�

RG�tL ÿ ti ÿ rLRLgsiny� ÿ RL�tG � ti ÿ rGRGgsiny� � 0 �17�
This suggests directly imposing Eq. (16) as the third boundary condition at the inlet.
The next two ®gures illustrate what has just been said about boundary conditions. Two

numerical runs were performed for a pipe of length L= 10 000 m. At the inlet, the ¯owrates
are 10 kg/s (liquid) and 0.1 kg/s (gas). At the outlet, the pressure is maintained at 1 bar. Since
three eigenvalues are positive at the inlet, a third boundary condition is required. We attempt
to impose RG=0.6.
In the ®rst run, the diameter is equal to D = 0.25 m, which corresponds to large friction

terms. It can be seen from Fig. 1 that the inlet value RG=0.6 is immediately dissipated and as
a consequence, does not exercise any in¯uence over the inner state of the mixture. This
phenomenon is not sensitive to the mesh size.
In the second run, the diameter is increased to D= 0.75 m, so as to reduce the magnitude of

friction terms. From Fig. 2, it is now obvious that the inlet value RG=0.6 is perfectly
compatible with the inner state.

3. The drift-¯ux model

The Drift Flux Model is derived from the Two-Fluid Model by neglecting the static head
terms DPG and DPL in the last two Eq. (3) and Eq. (4) and replacing the two momentum
equations by their sum. The main advantages of this 3-equation model are:

Fig. 1. Pro®le in space of the gas volumetric fraction for several mesh sizes, with D = 0.25 m (zoom up to 5000 m).
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. the equations are in conservative form, which makes it easier to discretize by ®nite volume
methods;

. the interfacial friction term ti is cancelled out in the momentum equation, although it
appears in an additional algebraic relation called slip law;

. one does not have to work out a third boundary condition at the inlet;

. it is generally hyperbolic depending on the form of the slip law.

3.1. Transport equations

Adding (3) and (4) together yields

@

@t
�rGRGVG � rLRLVL� � @

@x
�rGRGV

2
G � rLRLV

2
L � P � � tG � tL ÿ �rGRG � rLRL�siny

�18�
The interfacial exchange term ti is no longer present in the above equation. This leads us to
consider DFM, a new model which consists of three partial di�erential equations, i.e. Eq. (1),
Eq. (2) and Eq. (18). In order for DFM to be cast into the strictly conservative form

@

@t
�w� � @

@x
�f�w�� � q�w�, �19�

where the ¯ux and the source

Fig. 2. Pro®le in space of the gas volumetric fraction for several mesh sizes, with D = 0.75 m.
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fT � �rGRGVG; rLRLVL; rGRGV
2
G � rLRLV

2
L � P� �20�

qT � �0; 0; tG � tL ÿ �rGRG � rLRL�gsiny �21�
are to depend only on

wT � �rGRG; rLRL; rGRGVG � rLRLVL�, �22�
it is necessary to introduce an algebraic relation called closure law or slip model.
In strati®ed ¯ow, the slip relation is obtained by combining the two momentum conservation

Eq. (3) and Eq. (4) in such a fashion that the pressure gradient vanishes. By neglecting
derivatives with respect to time, static head and inertia terms in this combination, we end up
with

tG
tG
ÿ tL
tL
� ti
RGRL

� �rG ÿ rL�gsiny � 0: �23�

For other ¯ow regimes, the closure law may be much more sophisticated.
It is mathematically equivalent to rewrite Eq. (19) under the quasi-linear form

@

@t
�w� � A�w� @

@x
�w� � q�w�, �24�

in which A is the Jacobian matrix of f with respect to w. If hyperbolicity holds, there exist
three eigenvalues l1Rl2Rl3 and a base of eigenvectors. As is the case for TFM, the extreme
eigenvalues are associated to acoustic waves, whereas the medium eigenvalue is associated to a
void fraction wave.

3.2. Numerical scheme

In this section, the basic ideas of the numerical scheme are outlined. Further details are to be
found in Faille and HeintzeÂ (1996).
Once again, let us divide the pipeline into regular cells Mi � �xiÿ1=2,xi�1=2�, the size of which

is denoted by Dx. The unknowns are located at the center of the cells: let wi be the one
associated to the cell Mi. Discretization in space reads

d

dt
�wi � � hi�1=2 ÿ hiÿ1=2

Dx
� qi �25�

with

hi�1=2 � 1

2
�f�wi � � f�wi�1�� ÿ 1

2
Di�1=2�wi�1 ÿ wi � �26�

In this formula, Di�1=2 is a di�usion matrix that has to be built up from wi and wi�1.
Extension to second order accuracy is achieved via the MUSCL strategy. Eqs. (25) and (26)
may appear to be a little simple-minded, but in reality, standard Godunov-type schemes using
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approximate Riemann solvers (Godlewski and Raviart, 1996) at sides xi�1=2 lead to even
poorer results. This is quite a puzzling feature of DFM.
The time discretization is explicit with respect to the medium eigenvalue and linearly implicit

with respect to the extreme eigenvalues.

4. The no-pressure-wave model

Experience with numerical simulations has shown that, in most transients of interest to the
oil and gas transport industry, pressure waves do not have a strong e�ect on the initiation and
transport of void waves. Hence, in a bolder step toward simpli®cation, we would like to rule
out the very existence of acoustic waves from the model equations.

4.1. Transport equations

Preliminary numerical investigations into the order of magnitude of di�erent terms in
Eq. (18) suggest that, in slow transients, it is legitimate to neglect the inertia terms. Doing so
amounts to replacing the mixture momentum Eq. (18) by a local static force balance

@

@x
�P � � tG � tL ÿ �rGRG � rLRL�gsiny: �27�

The NPW model is made up of Eq. (1), Eq. (2) and Eq. (27). The three partial di�erential
equations are complemented by an algebraic slip law.
Let us introduce super®cial velocities

UG � RGVG �28�

UL � RLVL �29�

US � UG �UL �30�
and let us consider

vT � �RG,P,US� �31�
as principal unknowns. This choice of variables turns out to be very handy for tackling the
limiting case of incompressible ¯ows. The equations of NPW can be summarized as

@

@t
�e�v�� � @

@x
�f�v�� � q�v� �32�

with

eT � �rGRG; rLRL; 0� �33�

fT � �rGRGVG; rLRLVL; P� �34�
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qT � �0; 0; tG � tL ÿ �rGRG � rLRL�gsiny� �35�
The slip law is formally expressed as

UG � C�RG,P,US� �36�
where the function C may admit the pipe angle of inclination y as a parameter.
Viviand (1996) shows that this model is a good approximation of the DFM as long as the

phasic velocities are small compared to the sound wave velocities, which is true for most
applications. He also proves that NPW always has a single ®nite eigenvalue, equal to

l�v� � @

@RG
�C�v��: �37�

The characteristic equation associated to this eigenvalue can be written as

IT�v� �
�
@

@t
�v� � l

@

@x
�v�
�
� IT�v� � q�v� �38�

IT(v) being an appropriate left eigenvector. Besides, there exists an algebraically-double
eigenvalue equal to 1. On this ground, the model is quali®ed as mixed hyperbolic/parabolic.
The number of characteristic equations associated with 1 is usually one, i.e. Eq. (27), but may
reach two for special thermodynamic laws.

4.2. Numerical scheme

In this section, the basic ideas of the numerical scheme are outlined. Further details are to be
found in Patault and Tran (1996).
The pipeline is divided into regular cells Mi � �xiÿ1=2,xi�1=2�, the size of which is denoted by

Dx. The unknowns are located at the center of the cells: let vi be the one associated to the cell
Mi. Unlike the two previous schemes, the NPW equations are discretized in a centered way at
the sides xi�1=2. In other words,

1

2

d

dt
�e�vi � � e�vi�1�� � f�vi�1� ÿ f�vi �

Dx
� 1

2
�q�vi � � q�vi�1�� �39�

Discretization in time of Eq. (39) is totally implicit. The ®nal scheme is ®rst order accurate
in time, and second order in space.
Eq. (39) has to be modi®ed over a cell across which the sign of the eigenvalue l changes, to

track shocks and rarefaction waves. An algorithm, inspired from Chattot and Malet (1987), is
set up to build the system of equations to be solved at each time step, according to the
characteristic velocity sign con®guration.
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5. Comparisons of the models

To compare the response of the three models, we ®rst de®ne a reference test case. This is
done in Table 1. For this test case, we display the theoretical response of each transport model.
By theoretical response, we mean the limit response obtained by decreasing the mesh size Dx
to 0.
Next, we compare the response of the three codes to the experimental measurements. We

also plot the computing time versus the accuracy for each the model response.

Table 1
De®nition of the reference test case

Pipe geometry Length 420 m
Diameter 30
Con®guration Horizontal

Transient scenario Inlet gas ¯owrate From 0.0048 to 0.0354 kg/s2 in 20 s
Inlet liquid ¯owrate 0.191 kg/s2

Outlet pressure 1.68 bar

Fluid de®nition and properties Composition Air/Kerosene
Gas density 2.418 kg/m3

Liquid density 813 kg/m3

Gas viscosity 0.76 10ÿ5 m2/s
Liquid viscosity 0.22 10-5 m2/s
Super®cial tension 0.03 N/m2

Fig. 3. Comparison between DFM and NPW on outlet liquid ¯ow rate.
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Finally, we look at the response of NPW and DFM on a scenario giving rise to the severe
slugging phenomenon. On this case, the di�erences in responses are explained by arguments
involving the transport models and the numerical schemes.

Fig. 4. (a) Comparison between DFM and TFM on outlet liquid ¯ow rate. (b) Comparison between DFM and
TFM on liquid volume fraction.
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5.1. Transient response of models for reference case

Let us start by describing the actual values of parameters for the reference case.

Fig. 3 compares the transient response of DFM with NPW for Dx= 2 m. Below this value

of the mesh size, no signi®cant improvement in the accuracy of the solution for each model is

observed. Therefore, we assimilate the curves to the "analytical" solutions of the models.

To avoid discrepancies due to the slip model, we use in both cases a Zuber and Findlay

(1965) slip model, which is an alternative to the slip model de®ned in Eq. (23). The curves in

Fig. 3 exhibit very little di�erences in the transient response of the two models. This

corroborates the theoretical prediction by Viviand, according to which pressure waves play a

minor role on the propagation of the liquid.

Fig. 4 compares the transient responses of DFM and TFM, using a strati®ed slip model as

speci®ed in Eq. (23). One must bear in mind the fact that TFM includes a pressure di�erence

term due to the liquid fraction gradient, which is not included in DFM.

Although the transient imposed on the system is quite rapid (a 20 s ramp in inlet gas ¯ow

rate), the responses of DFM and TFM are quite similar. This result tends to indicate that

TFM's decoupling of the phase velocities does not signi®cantly a�ect the transient response of

the model. In other words, it is the source terms that actually control the transient response.

In Fig. 5 we try to characterise the computing e�ciency of the di�erent codes. For this

purpose, we de®ne the "computing e�ciency" as the relation between the computing time and

the peak height in the liquid outlet ¯owrate. This maximum in the liquid outlet ¯owrate is

important for pipeline design because it characterises the outlet liquid ¯owrate surge into the

Fig. 5. Comparison of computing e�ciency between DFM and NPW model.
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separator following and increase in the inlet gas ¯owrate. The estimation of this liquid surge
will eventually control the outlet separator volume design recommendation.

The diagram in Fig. 5 shows that for a given accuracy, the mixed explicit/implicit resolution
used in the DFM code is faster than the implicit resolution in the NPW code.

Fig. 6. (a) Comparison between measured and computed liquid fraction using DF model. (b) Comparison between
measured and computed pressure using DF model.
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5.2. Comparison with experimental data

Next we compare the code responses with experimental data (Vigneron, 1995) taken for the
same test case. Fig. 6 compares the experimental results with the transient response of the
DFM using a slip model which takes into account the di�erent ¯ow regimes which can possibly
be encountered.
The large amplitude oscillations observed during the transient period signal the occurrence

of the slug ¯ow regime. The recognition of this ¯ow regime has important implications on the
pressure drop calculation.

Fig. 7. Comparison between experimental and computed pressure using the DFM and TFM models with an
imposed strati®ed con®guration.

Table 2
De®nition of the severe slugging test case

Pipe geometry Length 60 m and 14 m

Diameter 20
Con®guration Horizontal and vertical
Inlet gas ¯owrate 0.000196 kg/ s2

Transient scenario Inlet liquid ¯owrate 0.07854 kg/s2

Outlet pressure 1.0 bar
Fluid de®nition and properties Composition Air/Kerosene

Gas density 1.0 kg/m3

Liquid density 1000 kg/m3

Gas viscosity 1.5 10ÿ5 m2/s
Liquid viscosity 1.5 10-6 m2/s

Super®cial tension 0.07 N/m2
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Fig. 7 compares the same experimental results with the transient response of the DFM and
TFM with the slip model assuming a strati®ed ¯ow con®guration.
From Fig. 6b and Fig. 7, one can notice the important e�ect of the ¯ow regime prediction

and subsequent slip relation on the pressure transient response of the model.

Fig. 8. (a) Comparison between the DFM and the NPW models on pressure at riser bottom for a severe slugging
case. (b) Comparison between the DFM and the NPW models on outlet liquid ¯ow rate for a severe slugging case.
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5.3. Severe slugging case

Lastly, we compare the DFM and the NPW models on a severe slugging test case.
Table 2 de®nes the severe slugging test case. Fig. 8 shows the comparison between the two

codes. Slight di�erences are observed in the period and amplitude of oscillations. However
these can be attributed to the di�erences in treatment of the outlet boundary conditions. As
can be seen, the DFM solution algorithm at the outlet does prevent liquid from going back
into the pipeline during the re¯ux period. This problem is resolved by introducing a ®ctitious
cell at the outlet in which we assume single phase gas ¯ow.

6. Conclusion

Extensive numerical tests have been carried out in order to compare the analytical response
of the three following models:

. a Two Fluid Model with one momentum equation for each phase;

. a Drift Flux Model with only one momentum equation for the mixture;

. a No Pressure Wave model reducing the momentum equation to a force balance.

On one hand, di�erent hydrodynamic slip laws have been incorporated into these models.
The results clearly show that the choice of the former has an critical e�ect on the dynamic
response of the latter.
On the other hand, comparison between the di�erent transport models con®rms the fact that

the source terms in the momentum equation do dominate the transient response of the model.
This holds true for all models, but becomes overwhelmingly apparent in the case of TFM.
The computing e�ciency as de®ned from the end user's perspective, that is, the peak in

outlet liquid ¯owrate subsequent to an increase in the inlet gas ¯owrate, has been analyzed for
DFM and NPW. For a given accuracy, the DFM explicit/implicit resolution is faster than the
implicit resolution employed in the NPW code.
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